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Abstract

In fact, most credit card issuers (or home equity banks) frequently offer cardholders (or customers) a teaser interest rate
(say, I1), which is significantly lower than the regular interest rate of I2 (with I2 > I1) for only 6 months or a year (say, M2)
to lure new customers from their competitors. Consequently, the customer faces a progressive interest charge from the
bank. If the customer pays the outstanding balance by the grace period (say, M1 which is generally 25 days), then the bank
does not charge any interest. If the outstanding amount is paid after M1, but by M2 (with M2 > M1), then the bank charges
the customer the teaser interest rate of I1 on the unpaid balance. If the customer pays the outstanding amount after M2,
then the bank charges the regular interest rate of I2. In this paper, we first establish an appropriate EOQ model for a retai-
ler when the bank (or the supplier) offers a progressive interest charge, and then provide an easy-to-use closed-form solu-
tion to the problem.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

In practice, a supplier frequently offers a retailer a delay of a fixed time period (say, 30 days) for settling the
amount owed to him. Usually, there is no interest charge if the outstanding amount is paid within the permis-
sible delay period. Note that this credit term in financial management is denoted as ‘‘net 30’’. For example, see
Brigham (1995). However, if the payment is not paid in full by the end of the permissible delay period, then
interest is charged on the outstanding amount. Therefore, it is clear that a customer will delay the payment up
to the last moment of the permissible period allowed by the supplier. The permissible delay in payments
produces two benefits to the supplier: (1) it not only encourages customers to order more, but also attracts
new customers, and (2) it may be applied as an alternative to price discount because it does not provoke
0377-2217/$ - see front matter � 2006 Elsevier B.V. All rights reserved.
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competitors to reduce their prices and thus introduce lasting price reductions. On the other hand, the policy of
granting credit terms adds not only an additional cost but also an additional dimension of default risk to the
supplier.

Goyal (1985) established an EOQ model when the supplier offers the retailer a permissible delay in
payments. Aggarwal and Jaggi (1995) then extended Goyal’s model for deteriorating items. Jamal et al.
(1997) further generalized the model to allow for shortages and deterioration. Hwang and Shinn (1997)
developed the optimal pricing and lot sizing for the retailer under the condition of permissible delay in
payments. Liao et al. (2000) developed an inventory model for stock-depend demand rate when a delay
in payment is permissible. Chang and Dye (2001) extended the model by Jamal et al. (1997) to allow
for not only a varying deterioration rate of time but also the backlogging rate to be inversely proportional
to the waiting time. All the above models ignored the difference between unit price and unit cost. In con-
trast, Jamal et al. (2000) and Sharker et al. (2000) amended Goyal’s model by considering the difference
between unit price and unit cost, and concluded from computational results that the retailer should settle
his account relatively sooner as the unit selling price increases relative to the unit cost. Recently, Teng
(2002) provided an alternative conclusion from Goyal (1985), and mathematically proved that it makes
economic sense for a well-established buyer to order less quantity and take the benefits of the permissible
delay more frequently. Chang et al. (2003) then extended Teng’s model, and established an EOQ model
for deteriorating items in which the supplier provides a permissible delay to the purchaser if the order
quantity is greater than or equal to a predetermined quantity. Moreover, Teng et al. (2005b) further devel-
oped an algorithm for a retailer to determine its optimal price and lot size simultaneously when the sup-
plier offers a permissible delay in payments. Lately, Huang (2003) extended Goyal’s model to develop an
EOQ model in which the supplier offers the retailer the permissible delay period M, and the retailer in
turn provides the trade credit period N (with N 6M) to his/her customers. He then obtained the
closed-form optimal solution and two interesting theoretical results. Teng et al. (2005a) further
complement the shortcoming of Huang’s model by considering the difference between unit price and unit
cost.

As a matter of fact, most credit card issuers (or banks) frequently offer customers a teaser interest rate
(say, I1), which is significantly lower than the regular interest rate of I2 (with I2 > I1) for only 6 months or
a year (say, M2) to lure new customers from their competitors. Consequently, the customer faces a pro-
gressive interest charge from the bank. If the customer pays the outstanding balance by the grace period
(say, M1 which is generally 25 days), then the bank does not charge any interest. If the outstanding
amount is paid after M1, but by M2 (with M2 > M1), then the bank charges the customer the teaser inter-
est rate of I1 on the unpaid balance. If the customer pays the outstanding amount after M2, then the bank
charges the regular interest rate of I2. In this paper, we first establish an appropriate EOQ model for a
retailer when the bank (or the supplier) offers a progressive interest charge, and then provide an easy-
to-use closed-form solution to the problem. Furthermore, we study the effect of the teaser rate to the
retailer. From numerical examples as shown in Tables 1 and 2 below, we conclude that the retailer will
order more quantity and pay less total relevant cost per year if the supplier (or the bank) provides a
short-term teaser interest rate.

2. Assumptions and notation

The following assumptions are similar to those in Goyal’s (1985) EOQ model:

(1) The demand for the one-item is constant with time.
(2) Shortages are not allowed.
(3) Replenishment is instantaneous.
(4) The supplier (or the bank) provides a retailer (or the customer) trade credits as follows: If the retailer

pays by M1, then supplier does not charge the retailer any interest. If the retailer pays after M1 but before
M2, then the supplier charges the retailer an interest rate of I1. If the retailer pays after M2, then supplier
charges the retailer an interest rate of I2, with I2 > I1.

(5) Time horizon is infinite.
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In addition, the following notation is used throughout this paper.

D the demand rate per year
h the unit holding cost per year excluding interest charges
p the selling price per unit
c the unit purchasing cost, with c < p

M1 the first period of permissible delay in settling account without extra charges
M2 the second period of permissible delay in settling account with an interest charge of I1 and M2 > M1

I1 the interest charged per $ in stocks per year by the supplier when the retailer pays after M1 and before
M2

I2 the interest charged per $ in stocks per year by the supplier when the retailer pays after M2

Ie the interest earned per $ per year
S the ordering cost per order
Q the order quantity
T the replenishment time interval
I(t) the level of inventory at time t, 0 6 t 6 T

Z(T) the total relevant cost per year, which consists of (a) cost of placing orders, (b) cost of carrying
inventory (excluding interest charges), (c) cost of interest charges for unsold items after the permis-
sible delay M1 or M2, and (d) interest earned from sales revenue during the permissible period
[0, M1]

3. Mathematical formulation

The level of inventory I(t) gradually decreases mainly to meet demand. Hence, the variation of inventory
with respect to time can be described by the following differential equations:
dIðtÞ
dt
¼ �D; 0 6 t 6 T ; ð1Þ
with the boundary conditions: I(0) = Q, I(T) = 0. Consequently, the solution of (1) is given by
IðtÞ ¼ DðT � tÞ; 0 6 t 6 T ð2Þ

and the order quantity is Q = DT.
  Inventory Level

Q

        0                       T 1M 2M Time

Fig. 1. Graphical representation for Case 1.



Inventory Level 

Q

        0               1M T 2M Time

Fig. 2. Graphical representation for Cases 2.1 and 2.2.
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The total relevant cost per year consists of the following elements:
ðaÞ Cost of placing orders ¼ S=T ; ð3Þ

ðbÞ Cost of carrying inventory ¼ h
Z T

0

IðtÞdt=T ¼ hD
2

T : ð4Þ
Regarding interests charged and earned (i.e., costs of (c) and (d)), based on the length of the replenishment
cycle T, we have three possible cases: (1) T 6M1, (2) M1 < T < M2, and (3) T P M2 (see Figs. 1–3).

Case 1. T 6M1

In this case, the retailer sells DT units in total at time T, and has cDT dollars to pay the supplier in full at
time M1. Consequently, there is no interest payable. However, during [0, T] period, the retailer sells products
and deposits the revenue into an account that earns Ie per dollar per year. In the period [T,M1], the retailer
only deposits the total revenue into an account that earns Ie per dollar per year. Therefore, the interest earned
per year is
pIe

Z T

0

Dt dt þ DT ðM1 � T Þ
� ��

T ¼ pIeDðM1 � T =2Þ: ð5Þ
Inventory Level

Q

        0        1M 2M T Time

Fig. 3. Graphical representation for Cases 3.1–3.3.
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From (3)–(5), we have the total relevant cost per year Z1(T) is
Z1ðT Þ ¼
S
T
þ hD

2
T � pIeD M1 �

T
2

� �
: ð6Þ
Case 2. M1 < T < M2

During [0,M1] period, the retailer sells products and deposits the revenue into an account that earns Ie per
dollar per year. Therefore, the interest earned during this period is pIe

RM1

0 Dtdt ¼ pIeDM2
1=2. Additionally, the

retailer buys DT units at time 0, and owes cDT dollars to the supplier. At time M1, the retailer sells (DM1)
units in total and has pDM1 dollars plus interest earned ðpIeDM2

1=2Þ dollars to pay the supplier. From the
difference between the total purchase cost cDT and the total amount of money in the account pDM1þ
pIeDM2

1=2, there are two possible sub-cases: (2.1) pDM1 þ pIeDM2
1=2 P cDT , and (2.2) pDM1 þ pIeDM2

1=2 <
cDT .

Case 2.1. pDM1 þ pIeDM2
1=2 P cDT

In this sub-case, the retailer has enough money in his/her account to pay off the total purchase cost at time
M1. Hence, the total purchase cost is paid at M1 and there is no interest charge. The interest earned per year is
pIe

RM1

0 Dt dt=T ¼ pIeDM2
1=2T . Therefore, the total relevant cost per year Z2.1(T) is
Z2:1ðT Þ ¼
S
T
þ hD

2
T � pIeDM 2

1

2T
: ð7Þ
Case 2.2. pDM 1 þ pI eDM2
1=2 < cDT

If pDM1 þ pIeDM2
1=2 < cDT , then the supplier starts to charge the retailer the unpaid balance

L1 ¼ cDT � ½pDM1 þ pIeDM2
1=2� with interest rate I1 at time M1. Thereafter, the retailer gradually reduces

the amount of the loan due to constant sales and revenue received. As a result, the interest payable per year
is
I1L1½L1=ðpDÞ�=ð2T Þ ¼ I1

2pDT
½cDT � pDM 1ð1þ IeM1=2Þ�2: ð8Þ
The interest earned per year is pI e

RM1

0 Dt dt=T ¼ pI eDM2
1=2T . Therefore, the total relevant cost per year Z2.2(T)

is
Z2:2ðT Þ ¼
S
T
þ hD

2
T � pIeD

2T
M2

1 þ
I1

2pDT
½cDT � pDM1ð1þ IeM1=2Þ�2: ð9Þ
Case 3. T P M2

This case is similar to Case 2. Based on the total purchase cost cDT, the total amount of money in the
account at M1, pDM1 þ pIeDM2

1=2, and the total amount of money in the account at M2, pDM2 þ pIeDM2
2=2,

there are three possible sub-cases: (3.1) pDM1 þ pIeDM2
1=2 P cDT , (3.2) pDM1 þ pIeDM2

1=2 < cDT but
½pDðM2 �M1Þ þ pIeDðM2 �M1Þ2=2�P ½cDT � pDM1 � pIeDM2

1=2� and (3.3) pDM2 þ pIeDM2
2=2 < cDT and

½pDðM2 �M1Þ þ pIeDðM2 �M1Þ2=2� < ½cDT � pDM1 � pIeDM2
1=2�.

Case 3.1. pDM1 þ pIeDM2
1=2 P cDT

This sub-case is the same as Case 2.1. Hence, the retailer will pays the total purchase cost at M1 and there is
no interest charge. The total relevant cost per year Z3.1(T) is
Z3:1ðT Þ ¼
S
T
þ hD

2
T � pIeDM 2

1

2T
: ð10Þ
Case 3.2. pDM 1 þ pI eDM2
1=2 < cDT but ½pDðM2 �M1Þ þ pI eDðM2 �M1Þ2=2�P ½cDT � pDM 1 � pIeDM2

1=2�
In this sub-case, the retailer has not enough money in his/her account to pay off the total purchase cost at

time M1, but he/she can pay off the total purchase cost before or on M2. Hence, retailer only pays
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pDM1 þ pIeDM2
1=2 at M1 and the supplier start to charge the retailer the unpaid balance

cDT � ½pDM1 þ pIeDM2
1=2� with interest rate I1 at time M1. Therefore, the sub-case is the same as Case 2.2

and the total relevant cost per year Z3.2(T) as follows:
Z3:2ðT Þ ¼
S
T
þ hD

2
T � pI eD

2T
M2

1 þ
I1

2pDT
½cDT � pDM 1ð1þ IeM1=2Þ�2: ð11Þ
Case 3.3. pDM 2 þ pIeDM2
2=2 < cDT and ½pDðM2 �M1Þ þ pIeDðM2 �M1Þ2=2� < ½cDT � pDM 1 � pI eDM 2

1=2�
Since the retailer has not enough money in his/her account to pay off the total purchase cost at time M2, he/

she only pays ½pDM1 þ pIeDM2
1=2� at M1 and [pD(M2 �M1) + pIeD(M2 �M1)2/2] at M2. Hence, the supplier

starts to charge the retailer the unpaid balance L1 ¼ cDT � ½pDM1 þ pIeDM2
1=2� with interest rate I1 during

[M1,M2] and L2 ¼ cDT � ½pDM1 þ pIeDM2
1=2� � ½pDðM2 �M1Þ þ pIeDðM2 �M1Þ2=2� with interest rate I2 at

time M2. Therefore, the interest payable per year is
I1½cDT � pDM 1 � pIeDM 2
1=2�ðM2 �M1Þ=T þ I2L2½L2=ðpDÞ�=ð2T Þ

¼ I1ðM2 �M1ÞD
T

½cT � pM1ð1þ IeM1=2Þ� þ I2D
2pT

cT � pM2 �
pI e

2
M2

1 þ ðM2 �M1Þ2
h i� �2

: ð12Þ
The total relevant cost per year Z3.3(T) is
Z3:3ðT Þ¼
S
T
þhD

2
T �pIeD

2T
M 2

1þ
I1ðM2�M1ÞD

T
½cT �pM1ð1þ IeM1=2Þ�þ I2D

2pT
cT �pM2�

pIe

2
M2

1þðM 2�M 1Þ2
h i� �2

:

ð13Þ
4. Theoretical results

The first-order condition for Z1(T) in (6) to be minimized is dZ1(T)/dT = 0, which leads to
2S ¼ Dðhþ pI eÞT 2 ð14Þ
and thus the optimal value of T for Case 1 is
T 1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2S=½Dðhþ pI eÞ�

p
: ð15Þ
The second-order condition as
d2Z1ðT Þ
dT 2

¼ 2S

T 3
> 0: ð16Þ
Substituting (15) into inequality T1 6M1, we know that
if and only if 2S 6 Dðhþ pIeÞM2
1; then T 1 6 M1: ð17Þ
Likewise, the first-order condition for Case 2.1 is dZ2.1(T)/dT = 0, which leads us to
ð2S � pI eDM2
1Þ ¼ hDT 2: ð18Þ
Consequently, we obtain the optimal value of T for Case 2.1 is
T 2:1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2S � pI eDM2

1Þ=ðhDÞ
q

: ð19Þ
For the second-order condition, we get
d2Z2:1ðT Þ
dT 2

¼ 2S � pI eDM2
1

T 3
> 0: ð20Þ
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To ensure M1 < T2.1 < M2 and pDM1 þ pI eDM2
1=2 P cDT , we substitute (19) into both inequalities and obtain that
pI eDM2
1 þ hDD1 > 2S > ðhþ pI eÞDM2

1; ð21Þ

where D1 ¼ minfM2

2; ½ðpM1=cÞð1þ I eM1=2Þ�2g > M2
1.

Likewise, the first-order condition for Case 2.2 is dZ2.2(T)/dT = 0, which leads us to
hDþ c2I1D
p

� �
T 2 ¼ 2S � pIeDM2

1 þ
I1D

p
½pM1ð1þ IeM1=2Þ�2 ð22Þ
and thus the optimal value of T for Case 2.2 is
T 2:2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2S � pI eDM 2

1 þ ðI1D=pÞ½pM1ð1þ IeM1=2Þ�2

hDþ ðc2I1D=pÞ

s
: ð23Þ
For the second-order condition, we get
d2Z2:2ðT Þ
dT 2

¼ D
T

hþ c2I1

p

� �
> 0: ð24Þ
To ensure pDM1 þ pIeDM2
1=2 < cDT and M1 < T2.2 < M2, we substitute (23) into both inequalities and obtain that
pI eDM2
1 þ hD½ðpM1=cÞð1þ IeM1=2Þ�2 < 2S < pI eDM 2

1 �
I1D

p
½pM 1ð1þ I eM1=2Þ�2 þM2

2 hDþ c2I1D
p

� �
:

ð25Þ

By using an analogous argument, we can obtain the first-order condition for Case 3.1 is dZ3.1(T)/dT = 0,

which leads us to
2S � pI eDM 2
1

� 	
¼ hDT 2: ð26Þ
Consequently, we obtain the optimal value of T for Case 3.1 is
T 3:1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2S � pIeDM 2

1Þ=hD
q

: ð27Þ
For the second-order condition, we get
d2Z3:1ðT Þ
dT 2

¼ 2S � pIeDM 2
1

T 3
> 0: ð28Þ
From pDM 1 þ pI eDM 2
1=2 P cDT and T3.1 P M2, we substitute (27) into both inequalities and obtain that
pI eDM2
1 þ hDM2

2 6 2S 6 pIeDM 2
1 þ hD½ðpM1=cÞð1þ IeM1=2Þ�2: ð29Þ
For Case 3.2, we can obtain the first-order condition dZ3.2(T)/dT = 0, which leads us to
hDþ c2I1D
p

� �
T 2 ¼ 2S � pIeDM2

1 þ
I1D

p
½pM1ð1þ IeM1=2Þ�2 ð30Þ
and thus the optimal value of T for Case 3.2 is
T 3:2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2S � pI eDM 2

1 þ ðI1D=pÞ½pM1ð1þ IeM1=2Þ�2

hDþ ðc2I1D=pÞ

s
: ð31Þ
The second-order condition
d2Z3:2ðT Þ
dT 2

¼ D
T

hþ c2I1

p

� �
> 0: ð32Þ
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From pDM1 þ pI eDM2
1=2 < cDT but ½pDðM2 �M1Þ þ pI eDðM2 �M1Þ2=2�P ½cDT � pDM 1 � pIeDM2

1=2�
and T3.2 P M2, we substitute (31) into three inequalities and obtain that
pIeDM 2
1�

I1D
p
½pM1ð1þ IeM1=2Þ�2þ hDþc2I1D

p

� �
D2

2 < 2S< pIeDM2
1�

I1D
p
½pM1ð1þ I eM1=2Þ�2þ hDþ c2I1D

p

� �
D2

3;

ð33Þn o

where D2 = max{M2, [(pM1/c)(1 + IeM1/2)]} and D3 ¼ pM2

c þ
pIe

2c ½ðM2 �M1Þ2 þM2
1� > M2.

For Case 3.3, we obtain the first-order condition as
hDþ c2I2D
p

� �
T 2¼ 2S�pI eDM2

1þ
I2D

p
pM2þ

pIe

2
ðM2�M1Þ2þM2

1

h i
 �2

�2I1ðM2�M1ÞDpM1ð1þ IeM1=2Þ:

ð34Þ
Consequently, we obtain the optimal value of T for Case 3.3 is
T 3:3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2S � pIeDM2

1 þ ðI2D=pÞD2
4 � 2I1ðM2 �M1ÞDpM 1ð1þ IeM1=2Þ

hDþ ðc2I2D=pÞ

s
; ð35Þ
where D4 ¼ pM2 þ
pIe

2
½ðM2 �M1Þ2 þM2

1�
n o

.

The second-order condition
d2Z3:3ðT Þ
dT 2

¼ D
T

hþ c2I2

p

� �
> 0: ð36Þ
From pDM 1 þ pI eDM 2
1=2 < cDT and ½pDðM2 �M1Þ þ pIeDðM2 �M1Þ2=2� < ½cDT � pDM 1 � pIeDM 2

1=2�,
we obtain than
2S > pI eDM2
1 þ 2I1ðM2 �M1ÞDpM 1ð1þ IeM1=2Þ � I2D

p
D2

4 þ hDþ c2I2D
p

� �
D2

3: ð37Þ
Theorem 1. When M2 < [(pM1/c)(1 + IeM1/2)], we have the following results:

(1) If 2S 6 Dðhþ pI eÞM2
1, then T* = T1.

(2) If Dðhþ pI eÞM2
1 < 2S < pI eDM 2

1 � I1D
p ½pM1ð1þ IeM1=2Þ�2 þM2

2 hDþ c2I1D
p

� 

, then T* = T2.1.

(3) If pIeDM 2
1 �

I1D
p ½pM1ð1þ IeM1=2Þ�2 þM2

2 hDþ c2I1D
p

� 

6 2S 6 pIeDM 2

1 þ hDM2
2, then we know:
(a) If Z2.1(T2.1) 6 Z3.2(T3.2) then T* = T2.1.

(b) Otherwise, T* = T3.2.
(4) If pIeDM 2
1 þ hDM2

2 < 2S < pIeDM 2
1 þ hD½ðpM 1=cÞð1þ IeM1=2Þ�2, then we know:
(a) If Z3.1(T3.1) 6 Z3.2(T3.2) then T* = T3.1.

(b) Otherwise, T* = T3.2. � 


(5) If pI eDM2

1 þ hD½ðpM1=cÞð1þ IeM1=2Þ�2 < 2S < pI eDM2
1 �

I1D
p ½pM 1ð1þ I eM1=2Þ�2 þ hDþ c2I1D

p D2
3 then

T* = T3.2.
(6) If 2S > pI eDM2

1 þ 2I1ðM2 �M1ÞDpM 1ð1þ IeM1=2Þ � I2D
p D2

4 þ hDþ c2I2D
p

� 

D2

3, then T* = T3.3.

Proof. It immediately follows from (17), (21), (25), (29), (33) and (37). h

Theorem 2. When M2 > [(pM1/c)(1 + IeM1/2)], we have the following results:

(1) If 2S 6 Dðhþ pI eÞM2
1, then T* = T1.

(2) If Dðhþ pI eÞM2
1 < 2S < pI eDM 2

1 þ hD½ðpM1=cÞð1þ I eM1=2Þ�2, then T* = T2.1.
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(3) If pI eDM2
1 þ hD½ðpM1=cÞð1þ IeM1=2Þ�2 < 2S < pI eDM 2

1 � I1D
p ½pM 1ð1þ IeM1=2Þ�2 þM2

2 hDþ c2I1D
p

� 

, then

T* = T2.2.

(4) If pIeDM2
1 �

I1D
p ½pM1ð1þ IeM1=2Þ�2 þM2

2 hDþ c2I1D
p

� 

< 2S < pIeDM 2

1 �
I1D

p ½pM1ð1þ IeM1=2Þ�2 þ hDþð
c2I1D

p ÞD
2
3 then T

*
= T3:2.

(5) If 2S > pIeDM 2
1 þ 2I1ðM2 �M1ÞDpM 1ð1þ I eM1=2Þ � I2D

p D2
4 þ hDþ c2I2D

p

� 

D2

3, then T* = T3.3.

Proof. It immediately follows from (17), (21), (25), (29), (33) and (37). h
5. Numerical examples

Example 1. Given D = 1000 units/year, h = $4/unit/year, I1 = 0.03/year, I2 = 0.12/year, Ie = 0.04/year, c =
$25 per unit, p = $35 per unit, M1 = 30 days = 30/365 years, and M2 = 90 days = 90/365 (or 0.246575) years,
we obtain M2 > [(pM1/c)(1 + IdM1/2)] = 0.115258. Using the results in Theorem 2, we obtain the following
computational results as shown in Table 1 when S = 15, 30, 50, 60, 100, 150, 200, 250, 400, 500 and 600.

Table 1 reveals that the higher the ordering cost S, the higher the ordering quantity Q*, the replenishment
cycle T*, and the total relevant cost per year Z(T*).

Example 2. From Example 1, we know that the retailer will take the teaser rate when S = 50, 60, 100, 150,
200 and 250. In this example, we want to study the effect of the teaser rate. By using the same parameters as
shown in Example 1, if the bank (or the supplier) does not offer the teaser rate, then we obtain the following
computational results as shown in Table 2 when S = 50, 60, 100, 150, 200 and 250.

By comparing Tables 1 and 2, we know that the retailer will order more quantity Q* and pay less total rel-
evant cost per year Z(T*) when the supplier (or the bank) offers a teaser rate.
Table 2
Optimal solutions of Example 2

Ordering cost S Replenishment cycle T* Order quantity Q* Total relevant cost per year Z(T*)

50 0.139189 139.1888 608.0361
60 0.150430 150.4305 677.0922
100 0.188819 188.8189 912.9070
150 0.227885 227.8852 1152.8854
200 0.261172 261.1718 1357.3605
250 0.290671 290.6713 1538.5715

Table 1
Optimal solutions of Example 1

Ordering cost S Replenishment cycle T* Order quantity Q* Total relevant cost per year Z(T*)

15 T1 = 0.074536 74.5356 Z1(T1) = 287.4237
30 T2.1 = 0.112408 112.4080 Z2.1(T2.1) = 449.6324
50 T2.2 = 0.146735 146.7348 Z2.2(T2.2) = 603.8019
60 T2.2 = 0.161061 161.0607 Z2.2(T2.2) = 668.7801
100 T2.2 = 0.208754 208.7543 Z2.2(T2.2) = 885.1045
150 T3.2 = 0.256175 256.1749 Z3.2(T3.2) = 1100.1911
200 T3.2 = 0.296096 296.0960 Z3.2(T3.2) = 1281.2616
250 T3.2 = 0.331240 331.2402 Z3.2(T3.2) = 1440.6658
400 T3.3 = 0.352231 352.2309 Z3.3(T3.3) = 1868.2402
500 T3.3 = 0.395758 395.7584 Z3.3(T3.3) = 2093.3185
600 T3.3 = 0.434952 434.9516 Z3.3(T3.3) = 2303.2284
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6. Conclusions and future research

In this paper, we introduced a new idea to the area of trade credits. Namely, the supplier charges the retailer
progressive interest rates if the retailer prolongs its unpaid balance. By offering progressive interest rates to the
retailers a supplier, can secure competitive market advantage over the competitors and possibly improve market
share or/and profit. In the paper, we established the necessary and sufficient conditions for the unique optimal
replenishment interval, and obtained the explicit closed-form optimal solution. Furthermore, we constructed
two theoretical results, which provide us a simple way to obtain the optimal replenishment interval by examin-
ing the explicit conditions. Finally, we provided two numerical examples to show that the retailer will order
more quantity and pay less total relevant cost per year if the supplier offers a short-term teaser interest rate.

The model proposed in this paper can be extended in several ways. For instance, we may extend the model
to allow for a constant deterioration rate or a two-parameter Weibull distribution. Also, we could consider the
demand as a function of price, quality as well as time varying. Furthermore, we could generalize the model to
allow for shortages, quantity discounts, discount and inflation rates, and others. Finally, the supplier may
extend two progressive interest charges to n progressive interest charges. However, in this paper, there are
6 (i.e., 1 + 2 + 3 sub-cases) sub-cases when the supplier provides two progressive interest charges. If the sup-
plier provides n progressive interest charges, then the problem has (n + 1)(n + 2)/2 sub-cases (i.e.,
1 + 2 + � � � + (n + 1) sub-cases), and becomes very complicated and tedious. The authors believe that this
paper will work as a catalyst in the generation of numerous research papers in years to come.
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